v.s. Khilov Theoretical Fundamentals of Electrical Engineering

Steady states in cleetrical circuits Transients in cleetrical circuits Electrostatic field. Magnetic field of DC Alternating field in stationary mediums

Khilov V.S.

Theoretical Fundamentals of Electrical Engineering: textbook / V.S.Khilov; Ministry of Science and Education of Ukraine, National Mining University, 2018. – 467 p.

CONTENTS

		FOREWORD	3
		PREFACE	5
		BRIEF HISTORY	8
Part I.	BASIC TH CIRCUIT	IEORY OF THE STEADY-STATE IN ELECTRICAL S	12
	Section 1.	1. BASIC FEATURES AND CALCULATION	12
		METHODS OF DC LINEAR ELECTRICAL CIRCUITS	
		1.1. CURRENT, VOLTAGE, POWER, RESISTANCE AND CONDUCTANCE	12
		1.2. EQUIVALENT CIRCUITS FOR ELECTRICAL ENERGY SOURCES	16
		1.3. VOLTAGE DROP ACROSS THE CIRCUIT	19
		SECTION. OHM'S LAW	
		1.4. POTENTIAL DISTRIBUTION ALONG THE	
		ELECTRICAL CIRCUIT. POTENTIAL CIRCLE	20
		1.5. ENERGY BALANCE IN ELECTRICAL	
		CIRCUIT. TELLEGEN'S THEOREM	21
		1.6. CALCULATION METHODS OF COMPLICATED OUMIC CIDCUITS	22
		161 CIDCUITS CALCULATION DV	23
		TRANSFORMATION METHOD	23
		1 6 2 CIRCUITS CALCULATION USING	23
		KIRCHHOFF'S LAWS	29
		1.6.3. MESH METHOD OF CIRCUITS	_>
		CALCULATION (MAXWELL'S MESH)	32
		1.6.4. CIRCUITS CALCULATION USING NODAL	
		POTENTIALS METHOD	33
		1.6.5. CIRCUITS CALCULATION BY THE	
		SUPERIMPOISING METHOD. RULE OF	36
		CURRENT DEVIDOR	
		1.6.6. CIRCUITS CALCULATION BY	
		EQUIVALENT GENERATOR METHOD	38

	1.7. POWER TRANSFER FROM ACTIVE TO	
	PASSIVE ONT-PORT	40
	1.8. CONCLUSIONS	42
Section 2.	2. BASIC PECULIARITIES AND CALCULATION	
	METHODS OF SINGLE PHASE LINEAR	
	ELECTRICAL CIRCUITS DRIVEN BY	4.4
	HARMONIC OSCILLATIONS SOURCES	44
	2.1. HARMONIC OSCILLATIONS	44
	2.2. INSTANTANEOUS, AVERAGE AND	
	EFFECTIVE VALUES OF HARMONIC QUANTITY	46
	2.3. REPRESENTATION OF HARMONIC	
	FUNCTIONS BY VECTORS AND COMPLEX	
	NUMBERS	47
	2.4. HARMONIC OSCLLATIONS IN	
	ELEMENTARY R, L, C CIRCUITS	50
	2.4.1. OHMIC RESISTANCES	50
	2.4.2. INDUCTIVE ELEMENTS	51
	2.4.3. CAPACITIVE ELEMENTS	52
	2.5. HARMONIC OSCILLATION IN CIRCUIT	
	WITH ELEMENTS R, L, C CONNECTED IN	
	SERIES	53
	2.6. HARMONIC OSCILLATIONS IN CIRCUITS	
	WITH R, L, C ELEMENTS CONNECTED IN	
	PARALLEL	55
	2.7. PHASOR CALCULATION METHOD FOR	
	BRANCHED CIRCUIT UNDER HARMONIC	-
	ACTION	56
	2.8. POWER BALANCE IN AC CIRCUITS	61
	2.9. RESONANCE IN ELECTRICAL CIRCUITS	
	UNDER HARMONIC OCILLATIONS ACTION	64
	2.9.1. SERIES OSCILLATORY CIRCUIT.	(5
	VOLIAGES KESUNANCE	05
	CURRENTS RESONANCE	67
	2.9.2.1. LOSSLESS PARALLEL OSCILLATORY	07
	CIRCUIT	67
	2.9.2.2. PARALLEL OSCILLATING CIRCUIT	
	WITH LOSSES	68
	2.10. CONCLUSIONS	71

Section 3.	3. BASIC CHARACTERISTICS AND THE	
	CALCULATION METHODS OF INDUCTIVELY	
	COUPLED CIRCUITS	74
	3.1. MUTUAL INDUCTION PHENOMENON.	
	MUTUAL COUPLING FACTOR	74
	3.2. INDUCTIVELY COUPLED ELEMENTS	
	CONNECTED IN SERIES	77
	3. 3. INDUCTIVELY COUPLED ELEMENTS	
	CONNECTED IN PARALLEL	79
	3. 4. INDUCTIVE COUPLED CIRCUITS	
	CALCULATION METHODS	81
	3. 5. AIR-CORE TRANSFORMER	84
	3.6. CONCLUSIONS	86
Section 4.	4. BASIC FEATURES AND CALCULATION	
	METHODS OF POLYPHASE HARMONICAL	
	CIRCUITS	89
	4.1. POLYPHASE ELECTRICAL CIRCUITS	89
	4.2. WYE-CONNECTION IN THREE PHASE	
	CIRCUITS	91
	4.3. DELTA-CONNECTION IN THREE PHASE	o -
	CIRCUITS	95
	4.4. POWER MEASUREMENT IN THREE-PHASE	00
	CIRCUITS 4.5 Symmetrical Component Method	99 101
	4.5. SI MMETRICAL COMPONENT METHOD 4.5.1 THDEE DHASE SYSTEM SYMMETDICAT	101
	4.5.1. THREE FHASE STSTEW STWINETRICAL COMPONENTS	101
	4.5.2. COMPOSITION OF SYMMETRIC	101
	COMPONENTS OF THREE-PHASE VOLTAGE	
	SOURCE WITH THE VALUE OF ONE PHASE	
	CHANGED	104
	4.5.3. SYMMETRICAL THREE PHASE CIRCUIT	
	IMPEDANCES FOR DIFFERENT CURRENT	
	SEQUENCES	105
	4.6. CONCLUSIONS	108
Section 5	5. LINEAR CIRCUITS DRVEN BY PERIODIC	
Section of	NON-SINUSOIDAL VOLTAGES AND CURRENTS	114
	5.1. PERIODICAL FUNCTIONS EXPANSION IN	_
	FOURIER SERIES	114

	5.2. EXPANSION SYMMETRIC PERIODIC	
	NONSINUSOIDAL FUNCTIONS INTO A FOURIER	
	SERIES	116
	5.3. CALCULATION OF CIRCUITS DRIVEN BY	
	NONSINUSOIDAL ENERGY SOURCES	119
	5.4. EFFECTIVE AND AVEREGE VALUES OF	
	NONSINUSOIDAL VOLTAGES AND CURRENTS	122
	5.5. POWER IN CIRCUITS DRIVEN BY	
	NONSINUSOIDAL CURRENT	124
	5.6. RESONANCE IN CIRCUITS UNDER	
	NONSINUSOIDAL CURRENT	126
	5.7. COEFFICIENTS CHARACTERIZING	
	PERIODIC NONSINUSOIDAL CURRENTS AND	
	VOLTAGES	127
	5.8. HIGHER HARMONICS IN THREE-PHASE	
	CIRCUITS	129
	5.9. CONCLUSIONS	132
Section 6.	6. NONLINEAR ELECTRICAL CIRCUITS	141
	6.1. CHARACTERISTIC FEATURES OF	
	NONLINEAR ELEMENTS	141
	6.1.1. GRAPHICAL REPRESENTATION OF	
	NONLINEAR ELEMENTS	142
	6.1.2. STATIC AND DIFFERENTIAL OHMIC	
	RESISTANCES	147
	6.2. NONLINEAR DC CIRCUITS	148
	6.2.1. LINEARIZATION OF NONLINEAR	
	ELEMENT BY LINEAR OHMIC RESISTANCE	
	AND EMF	148
	6.2.2. SERIES, PARALLEL AND MIXED	
	CONNECTIONS OF NONLINEAR ELEMENTS	149
	6.2.3. CALCULATION OF CIRCUIT WITH A	
	NONLINEAR ELEMENT BY USING METHOD OF	
	OPEN AND SHORT CIRCUIT	151
	6.2.4. CALCULATION FEATURES OF	
	NONLINEAR CIRCUIT WITH TWO NODES	152
	6.3. NONLINEAR ELECTRICAL CIRCUIT UNDER	
	AC	154
	6.3.1. SPECIFIC FEATURES OF PERIODIC	
	PROCESSES IN ELECTRICAL CIRCUITS WITH	
	INERTIAL NONLINEAR ELEMENTS	154
	6.3.2. NONLINEAR INDUCTANCE DRIVEN BY	
	SINUSOIDAL VOLTAGE	156

	6.3.2.1. SATURATION AND HYSTERESIS	
	EFFECTS ON THE FORM OF FERROMAGNETIC-	
	CORE INDUCTANCE CURRENT	157
	6.3.2.2. EQUIVALENT CIRCUIT AND PHASOR	
	DIAGRAM OF INDUCTANCE COIL WITH	
	FERROMAGNETIC CORE	162
	6.3.2.3. EQUATIONS, PHASOR DIAGRAM AND	
	THE EQUIVALENT CIRCUIT OF TRANSFORMER	
	WITH FERROMAGNETIC CORE	167
	6.3.3. FERRORESONANCE PHENOMENON IN	
	ELECTRICAL CIRCUITS	171
	6.3.3.1. FERRORESONANCE PHENOMENON IN	
	SERIES-CONNECTED COIL WITH	
	FERROMAGNETIC CORE AND A CAPACITOR	172
	6.3.3.2. FERRORESONANCE PHENOMENON IN	
	PARALLEL-CONNECTED COIL WITH A	
	FERROMAGNETIC CORE AND A CAPACITOR	176
	6.3.4. INDUCTIVE UNCONTROLLABLE	
	ELEMENTS. FERROMAGNETIC VOLTAGE	
	STABILIZERS	179
	6.3.5. INDUCTIVE CONTROLLABLE ELEMENTS	
	OF NONLINEAR CIRCUIT	181
	6.3.5.1. FERROMAGNETIC POWER AMPLIFIER	181
	6.3.5.2. SEPARATION OF HIGHER HARMONICS	
	IN NONLINEAR CIRCUITS OF THE FREQUENCY	
	CONVERTERS	184
	6.3.6. SPECIFICS OF CALCULATION OF NON-	
	LINEAR CIRCUITS WITH SEMICONDUCTOR	
	DIODES. AC RECTIFICATION	187
	6.4. CONCLUSIONS	190
Section 7.	THEORETICAL FUNDAMENTALS OF TWO-	
	PORT NETWORKS	194
	7.1. THE TWO-PORT NETWORK EQUATIONS	194
	7.2. OPEN-CIRCUIT AND SHORT-CIRCUIT	
	MODES IN TWO-PORT NETWORKS	198
	7.3. TWO-PORT NETWORK COEFFICIENTS	
	DETERMINATION	199
	7.4. TWO-PORT NETWORK EQUIVALENT	
	PARAMETERS DETERMINATION	200
	7.5. MATCHED IMPEDANCE AND	
	PROPAGATION FACTOR OF SYMMETRIC TWO-	
	PORT NETWORK	202

		7.6. TWO-PORT NETWORKS TRANSFER	
		FUNCTIONS AND FEEDBACK COUPLINGS	204
		7.7. CONCLUSIONS	206
	Section 8.	8. REACTIVE ELECTRICAL FILTERS	209
		8.1. GENERAL PROPERTIES OF REACTIVE	
		FILTERS	209
		8.2. FREQUENCY CHARACTERISTICS OF	
		DIFFERENT TYPE OF FILTERS	210
		8.2.1. LOW-PASS FILTERS	210
		8.2.2. HIGH-PASS FILTERS	214
		8.2.3. BAND-PASS FILTERS	217
		8.2.4. BAND-STOP FILTERS	221
		8.3. CONCLUSIONS	225
	Section 9.	CIRCUIT WITH DISTRIBUTED PARAMETERS	227
		9.1. CIRCUIT WITH DISTRIBUTED	
		PARAMETERS	227
		9.2. HOMOGENEOUS LINE TELEGRAPH	
		EQUATIONS	228
		9.2.1. STEADY-STATE PROCESSES IN	
		HOMGENEOUS LINE. DISTORTIONLESS LINE	230
		9.2.2. CURRENTS AND VOLTAGES IN LONG	
		LINES	234
		9.2.2.1. LONG LINES UNDER DC	235
		9.2.2.2. LONG LINES UNDER AC	237
		9.2.2.1. WAVE PROCESSES IN LONG LINES	237
		9.2.2.2. DISTRIBUTION OF ACTUAL VALUES	
		OF VOLTAGE AND CURRENT ALONG THE LINE	242
		9.3. CONCLUSIONS	245
Part II.	BASIC TH	EORY OF TRANSIENTS IN ELECTRICAL	
	CIRCUITS		248
	Section 10.	10. TRANSIENT ANALYSIS OF LINEAR	
		CIRCUITS WITH LUMPED PARAMETERS	248
		10.1. OCCURRENCE OF TRANSIENTS	248
		10.2. CLASSICAL APPROACH TO TRANSIENTS	
		CALCULATION	249
		10.2.1. THE ELECTRICAL CIRCUITS SWITCHING	
		LAWS	249
		10.2.2. TRANSIENT, STEADY-STATE AND	
		NATURAL PROCESSES	252
		10.2.3. CHARACTERISTIC EQUATION	
		DETERMENATION	256

	10.2.4. DETERMINATION OF INTEGRATION	
	CONSTANTS	259
	10.2.5. THE ORDER OF TRANSIENTS	
	CALCULATION IN CIRCUITS UNDER DIRECT OR	
	HARMONIC ENERGY SOURCES USING	
	CLASSICAL APPROACH	268
	10.2.6. TRANSIENT ANALYSIS IN CIRCUITS OF	
	FIRST AND SECOND ORDER BY CLASSICAL	
	APPROACH	269
	10.2.6.1. FIRST ORDER CIRCUITS COMPRISING A	
	OHMIC RESISTOR AND AN INDUCTOR	269
	10.2.6.2. FIRST ORDER CIRCUITS COMPRISING	
	OHMIC RESISTOR AND CAPACITOR	277
	10.2.6.3. SECOND ORDER CIRCUITS	
	COMPRISING OHMIC RESISTOR, CAPACITOR	
	AND INDUCTOR	284
	10.3. TRANSIENT ANALYSIS USING THE	
	LAPLACE TRANSFORM TECHNIQUES	290
	10.3.1. ELECTRICAL CIRCUIT LAWS IN THE	
	OPERATIONAL FORM	292
	10.3.2. OPERATIONAL EQUIVALENT CIRCUIT	294
	10.3.3. TRANSIENTS CALCULATION TECHNIQUE	
	USING LAPLACE TRANSFORMS FOR CIRCUITS	
	DRIVEN BY DC OR AC SOURCES	296
	10.3.4. CALCULATION OF TRANSIENT	2 0 7
	RESPONSES USING OPERATIONAL METHOD	297
	10.3.5. TRANSITION FROM IMAGES TO	205
	UKIGINALS	305
	10.4. DETERMINATION OF CIRCUIT RESPONSE	207
	10 AKBITKAKY SHAPE SIGNAL	300 206
	10.4.1. DUHAMEL INTEGRAL	300
	A CTION OF A DRITDA DV SHADE	200
	ACTION OF ARDITRAKT SHAFE	300 210
	IU.5. CUNCLUSIUNS	310
Section 11.	11. TRANSIENT IN NONLINEAR CIRCUITS	314
	11.1. STABILITY OF OPERATION MODE IN	314
	NONLINEAR CIRCUITS	
	11.2. TRANSIENTS CALCULATION METHODS	_
	FOR NONLINEAR CIRCUITS	316
	11.2.1. INTERVALS LINEARIZATION METHOD	
	BY EXAMPLE OF SELF-OSCILLATING CIRCUIT	318

		11.2.2. TRANSIENT CALCULATING TECHNIQUES BY THE EXAMPLE OF SWITCHING ON AN INDUCTANCE COIL WITH STEEL CORE UNDER DC 11.2.3. SWITCHING ON AN INDUCTANCE COIL	266
		WITH STEEL CORE UNDER SINUSOIDAL	•• •
		VOLTAGE	326
		11.2.4. TRANSIENTS REPRESENTATION ON THE	220
		PHASE PLANE	328
		11.3. CONCLUSIONS	330
	Section 12.	12. TRANSIENT IN HOMOGENEOUS LINES WITH	
		DISTRIBUTED PARAMETERS	333
		12.1. MOVING WAVES OF CURRENT AND	333
		VOLTAGE	
		12.2. REFRACTED AND REFLECTED WAVES	336
		12.3. CONCLUSIONS	341
Part III.	BASIC TH	EORY OF ELECTROMAGNETIC FIELDS	342
	Section	13. ELECTROSTATIC FIELD IN A DIELECTRIC	
	13.	MEDIUMS	344
		13.1. ELECTRIC CHARGE. INTENSITY OF	
		ELECTRIC FIELD	344
		13.2. CURL-FREE NATURE OF ELECTROSTATIC	
		FIELD	347
		13.3. ELECTRICAL POTENTIAL	348
		13.4. DIELECTRIC POLARIZATION AND	
		ELECTRICAL INDUCTION	352
		13.5. GAUSS'S THEOREM	353
		13.6. POISSON'S AND LAPLACE'S EQUATIONS	355
		13.7. CONDUCTORS IN ELECTROSTATIC FIELD	356
		13.8. BOUNDARY CONDITIONS	357
		13.9. ELECTROSTATIC FIELD ENERGY DENSITY	360
		13.10. ELEMENTARY ELECTROSTATIC FIELDS	360
		13.10.1. GAUSS'S THEOREM IN CYLINDRICAL	360
		COORDINATES	
		13.10.1.1. FIELD OF SINGLE INFINITELY LONG	
		CHARGED AXIS DISTANCED FROM	2/1
		CUNDUCTING SURFACE	361
		15.10.1.2. FIELD OF TWO INFINITELY LONG	
		UPPUSITETELY CHARGED AXES DISTANCED	262
		FROM CONDUCTING SURFACE	362

	13.10.1.3. FIELD OF SINGLE-WIRE LINE	
	LOCATED NEAR CONDUCTIVE SURFACE.	
	METHOD OF ELECTRICAL IMAGES	363
	13.10.1.4. FIELD AND CAPACITANCE OF THREE-	
	WIRE LINE LOCATED NEAR CONDUCTING	
	SURFACE	365
	13.10.1.5. FIELD AND CAPACITANCE OF	
	CYLINDRICAL CAPACITOR WITH TWO-LAYER	
	DIELECTRIC	369
	13.10.2. USE OF GAUSS'S THEOREM IN	
	CARTESIAN COORDINATES SYSTEM. FIELD	
	AND CAPACITANCE OF PLANE MONOLAYER	
	AND TWO-LAYER CAPACITORS	371
	13.10.3. USE OF GAUSS' THEOREM IN	
	SPHERICAL COORDINATES SYSTEM. FIELD	
	AND CAPACITANCE OF SPHERICAL	
	CAPACITOR	373
	13.10.4. USE OF POISSON'S AND LAPLACE'S	
	EQUATIONS	375
	13. 10.4.1. POISSON'S EQUATION SOLUTION IN	
	CARTESIAN COORDINATE SYSTEM. FIELD OF	
	PLANE CAPACITOR	375
	13.10.4.2. LAPLACE'S EQUATION SOLUTION IN	
	SPHERICAL COORDINATE SYSTEM. FIELD OF	
	CHARGLESS SPHERE	376
	13.10.4.3. GAUSS'S EQUATION SOLUTION IN	
	CYLINDRICAL COORDINATES USING FIELD	
	PATTERN	379
	13.11. CONCLUSIONS	381
Section	14. ELECTROSTATIC FIELD IN A CONDUCTING	
14.	MEDIUM	388
	14.1. CONDUCTION CURRENT DENSITY	349
	14.2. OHM's, KIRCHOFF's AND JOULE's LAWS IN	
	DIFFERENTIAL FORM	389
	14.3. BOUNDARY CONDITIONS IN A	
	CONDUCTING MEDIUM	391
	14.4. THE ANALOGY BETWEEN THE	
	ELECTRISTATIC FIELDS IN THE DIELECTRIC	
	AND THE CONDUCTOR	393
	14.5. FIELDS MODELING	394
	14.6. FIELD OF A SPHERICAL GROUNDER	396
	14. 7. CONCLUSIONS	397

Section	15. MAGNETIC FIELD OF DC	402	
15.			
	15.1. BASIC QUANTITIES CHARACTERIZING		
	THE MAGNETIC FIELD	402	
	15.2. AMPERE'S CIRCUITAL LAW. SCALAR		
	MAGNETIC POTENTIAL	406	
	15.3. VECTOR POTENTIAL OF MAGNETIC FIELD	408	
	15.4. BOUNDARY CONDITIONS IN A MAGNETIC		
	FIELD	410	
	15.5. MAGNETIC FIELD ENERGY DENSITY	412	
	15.6. MAGNETIC FIELD INDUCED BY STRAIGHT		
	WIRE OF FINITE LENGHT	413	
	15.7. MAGNETIC FIELD AND INDUCTANCE OF		
	ISOLATED INFINITE LENGTH WIRE	415	
	15.8. MAGNETIC FIELD AND INDUCTANCE OF		
	ISOLATED TWO-WIRE LINE	418	
	15.9. MAGNETIC FIELD OF INFINITELY LONG		
	WIRES NEAR PLANE INTERFACE. METHOD OF		
	IMAGES	421	
	15.10. MAGNETIC FIELD INDUCED BY AN		
	ISOLATED BUSBAR	423	
	15.11. CONCLUSIONS	426	
Section	16. ALTERNATING ELECTROMAGNETIC FIELD		
16.	IN STATIONARY MEDIUM	430	
	16.1. DISPLACEMENT CURRENT	430	
	16.2. MAXWELL'S EQUATIONS	432	
	16.3. POYNTING'S THEOREM	433	
	16.4. PLANE WAVE IN HOMOGENEOUS		
	DIELECTRIC	436	
	16.5. CONCLUSIONS	441	
	AFTERWORD	443	
	BIBLIOGRAPHY	445	
	INDEX	448	